Math 247A Lecture 21 Notes

Daniel Raban

February 26, 2020

1 Estimates on the Littlewood-Paley Square Function and the Fractional Product Rule

1.1 Estimates on the Littlewood-Paley square function

Theorem 1.1 (Littlewood-Paley square function estimate). Let $f \in \mathcal{S}(\mathbb{R}^d)$ and define the square function

$$S(f) = \sqrt{\sum |f_N|^2}.$$

Then

$$||S(f)||_p \sim_p ||f||_p \quad \forall 1$$

Proof. Let $\{X_N\}_{N\in 2^{\mathbb{Z}}}$ be iid random variables with $X_n=\pm 1$ with equal probability, and define the random variable $m_X(\xi)=\sum X_n\psi_N(\xi)$. Last time, we showed that m_X is a Mikhlin multiplier, uniformly in the choice of X_N . This holds even if we replace ψ be another $C_c^{\infty}(\mathbb{R}^d\setminus\{0\})$ function. Now

$$m_X^{\vee} * f = \sum_{N \in 2^{\mathbb{Z}}} X_N f_N.$$

By Kinchine's inequality,

$$\mathbb{E}[|m_X^{\vee} * f|^2]^{1/p} \sim \sqrt{\sum |f_N|^2} \sim_p S(f).$$

Now

$$||S(f)||_p^p \sim \int \mathbb{E}[|m_X^{\vee} * f|^p(x)] dx$$

$$\sim \mathbb{E}\left[\underbrace{\int |m_X^{\vee} * f|^p(x) dx}_{||m_X^{\vee} * f||_p^p}\right]$$

$$\lesssim \mathbb{E}[||f||_p^p]$$

$$\lesssim \|f\|_p^p$$
.

Again, note that this holds for any $C_c^{\infty}(\mathbb{R}^d \setminus \{0\})$ function in place of ψ .

To prove the reverse inequality, we argue by duality and use the generality under which we proved the first inequality. We say

$$||f||_p = \sup_{||g||_{p'}=1} \langle f, g \rangle$$
$$= \sup_{||g||_{p'}=1} \left\langle \sum P_N f, g \right\rangle$$

Since $\widetilde{P}_N P_N = P_N$ and \widetilde{P}_n is self-adjoint,

$$= \sup_{\|g\|_{p'}=1} \sum_{N \in 2^{\mathbb{Z}}} \langle P_N f, \widetilde{P}_N g \rangle$$

$$\leq \sup_{\|g\|_{p'}=1} \int \sqrt{\sum_N |P_N f|^2} \sqrt{\sum_N |\widetilde{P}_N g|^2} dx$$

Using Hölder,

$$\leq \|S(f)\|_{p} \sup_{\|g\|_{p'}=1} \left\| \sqrt{\sum_{N} |\widetilde{P}_{N}g|^{2}} \right\|_{p'}.$$

Replacing ψ by $\widetilde{\psi}(\xi) = \psi(2\xi) + \psi(\xi) + \psi(\xi/2) \in C_c^{\infty}(\mathbb{R}^d \setminus \{0\})$ in the previous argument, we get

$$\left\| \sqrt{\sum_{N} |\widetilde{P}_{N} g|^{2}} \right\|_{p'} \lesssim \|g\|_{p'} \lesssim 1.$$

Corollary 1.1. Fix 1 . Then

1. Whenever s > -d and $f \in \mathcal{S}(\mathbb{R}^d)$ (or $s \in \mathbb{R}$ and $\widehat{f} \in C_c^{\infty}(\mathbb{R}^d \setminus \{0\})$),

$$\||\nabla|^s f\|_p \sim_p \left\|\sqrt{\sum N^{2s}|f_N|^2}\right\|_p.$$

2. For s > 0 and $f \in \mathcal{S}(\mathbb{R}^d)$,

$$\||\nabla|^s f\|_p \sim_p \|\sqrt{\sum_{N} N^{2s} |f_{\geq N}|^2}\|_p$$
.

Proof.

1. Let's show that $\left\|\sqrt{\sum N^{2s}|f_N|^2}\right\|_p \lesssim \||\nabla|^s f\|_p$. We have

$$\sum N^{2s} |f_N|^2 = \sum N^{2s} ||\nabla|^{-s} |\nabla|^s f_N|^2$$
$$= \sum |N^s |\nabla|^{-s} P_N(|\nabla|^s f)|^2$$

Replacing ψ by $\chi(\xi) = \frac{1}{(2\pi|\xi|)^s} \psi(\xi) \in C_c^{\infty}(\mathbb{R}^d \setminus \{0\} \text{ and } \psi_N \text{ by } \chi_N(\xi) = \left(\frac{N}{2\pi|\xi|}\right)^s \psi_N(\xi),$ we get

$$\left\| \sqrt{\sum |N^s|\nabla|^{-s} P_N(|\nabla|^s f)|^2} \right\|_p \lesssim_p \||\nabla|^s f\|_p.$$

To prove the reverse inequality, we argue by duality:

$$\begin{aligned} |||\nabla|^s f||_p &= \sup_{\|g\|_{p'}=1} \langle |\nabla|^s f, g \rangle \\ &= \sup_{\|g\|_{p'}=1} \sum_N \left\langle |\nabla|^s f_N, \widetilde{P}_N g \right\rangle \\ &= \sup_{\|g\|_{p'}=1} \sum_N \left\langle N^s f_N, N^{-s} |\nabla|^s \widetilde{P}_N g \right\rangle \end{aligned}$$

Recall that $\mathcal{F} = \{h \in \mathcal{S}(\mathbb{R}^d) : \widehat{h} \text{ vanishes in a nbhd of } 0\}$ is dense in $L^{p'}$. So we can always take g to be in this family. So

$$|||\nabla|^{s} f||_{p} \leq \sup_{\substack{g \in \mathcal{F} \\ ||g||_{p'} = 1}} \int \sqrt{\sum N^{2s} |f_{N}|^{2}} \sqrt{\sum N^{-2s} ||\nabla|^{s} \widetilde{P}_{n} g|^{2}} dx$$

$$\leq \left\| \sqrt{\sum N^{2s} |f_{N}|^{2}} \right\|_{p} \sup_{||g||_{p'} = 1} \left\| \sqrt{\sum N^{-2s} ||\nabla|^{s} \widetilde{P}_{N} g|^{2}} \right\|_{p}.$$

Replacing ψ by

$$\chi(\xi) = (2\pi|\xi|)^s \widetilde{\psi}(\xi), \qquad \chi_n(\xi) = \left(\frac{2\pi|\xi|}{N}\right)^s \widetilde{\psi}_N(\xi),$$

we get

$$\left\| \sqrt{\sum N^{-2s} ||\nabla|^s \widetilde{P}_N g|^2} \right\|_{p'} \lesssim \|g\|_{p'} \lesssim 1.$$

2. We claim that $\sum N^{2s} |f_{\geq N}|^2 \sim \sum N^{2s} |f_N|^2$. We have

$$\sum_{N} N^{2s} |f_{\geq N}|^2 = \sum_{N} N^{2s} \left(\sum_{N_1 \geq N} f_{N_1} \right) \left(\overline{\sum_{N_2 \geq N} f_{N_2}} \right)$$

By paying a factor of 2, we can assume $N_1 \leq N_2$.

$$\leq 2 \sum_{N \leq N_1 \leq N_2} N^{2s} |f_{N_1}| \cdot |f_{N_2}|$$

$$\lesssim \sum_{N_1 \leq N_2} N_1^{2s} |f_{N_1}| |f_{N_2}|$$

$$\lesssim \sum_{N_1 \leq N_2} \left(\frac{N_1}{N_2}\right)^s \left(N_1^s |f_{N_1}|\right) \left(N_2^s |f_{N_2}\right)$$

By Cauchy-Schwarz,

$$\lesssim \sum_{N} N^{2s} |f_N|^2.$$

On the other hand,

$$|f_N| = |f_{\geq N} - f_{\geq 2N}| \le |f_{\geq N} f_{\geq 2N}|.$$

So

$$\sum_{N} N^{2s} |f_{N}|^{2} \lesssim \sum_{N} N^{2s} |f_{\geq n}|^{2} + 2^{-2s} \sum_{N} (2N)^{2s} |f_{\geq 2N}|^{2}$$
$$\lesssim \sum_{N} N^{2s} |f_{\geq N}|^{2}.$$

1.2 The fractional product rule

Theorem 1.2 (Fractional product rule, Christ-Weinstein, 1991). Fix s>0 and $1< p, p_1, p_2, q_1, q_2 < \infty$. Then

$$\||\nabla|^s (fg)\|_p \lesssim \||\nabla|^s f\|_{p_1} \|g\|_{p_2} + \|f\|_{q_1} + \||\nabla|^s g\|_{q_2}.$$

whenever $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{q_1} + \frac{1}{q_2}$.

Remark 1.1. p_2 and q_1 are allowed to be ∞ .

We really should only be proving this for 0 < s < 1, since for integers, we can just use the regular product rule and then look at the fractional part.

Proof. We have

$$\||\nabla|^s (fg)\|_p \sim \left\| \sqrt{\sum_N N^{2s} |P_N(fg)|^2} \right\|_p.$$

We write $fg = f_{\geq N/4}g + f_{>N/4}g_{\geq N/4} + f_{< N/4}g_{< N/4}$, so

$$P_N(fg) = P_N(f_{\geq N/4}g) + P_N(f_{>N/4}g_{\geq N/4}) + P_N(f_{>N/4}g_{< N/4}).$$

This gives

$$|P_N(fg)| \lesssim M(f_{\geq N/4}g) + M(f_{\leq N/4}g_{\geq N/4})$$

 $\lesssim M(f_{>N/4}g) + M((Mf)g_{>N/4}).$

So we get

$$\sum N^{2s} |P_N(fg)|^2 \lesssim \sum |M((N^s f_{\geq N/4})g)|^2 + \sum |((Mf) \cdot N^s g_{\geq N/4})|^2,$$

which gives

$$\sqrt{\sum N^{2s} |P_N(fg)|^2} \lesssim \sqrt{\sum |M((N^s f_{\geq N/4})g)|^2} + \sqrt{\sum |((Mf) \cdot N^s g_{\geq N/4})|^2}.$$

So we get

$$\||\nabla|^s (fg)\|_p \lesssim \|\sqrt{N^{2s}|f_{\geq}N/4|^2}g\|_p + \|Mf\sqrt{N^{2s}|g_{\geq}N/4|^2}\|_p$$

By the corollary,

$$\leq \|\nabla|^s f\|_{p_1} \|g\|_{p_2} + \|f\|_{q_1} \||\nabla|^s g\|_{q_2}.$$